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The heat conduction through different metallic wires, which are excited by a modulated thermal source, is studied under the 
framework of Maxwell-Cattaneo equation or hyperbolic heat equation. Using the numerical solution under the radial 
direction of cylindrical coordinates. It has been shown in the high frequency regime that remarkable oscillations of the 
temperature amplitude are obtained, this amplitude depends also on the type of the wire used. Additionally the metallic 
wires are studied using the parabolic and hyperbolic equation of heat, under tow successive Gaussian excitations. In small 
gap time the response of the hyperbolic heat equation shows specific behaviour when the relaxation time is quite smaller 
than the gap time between the successive Gaussian excitations. The obtained numerical results are supported by theory 
and experiments which constitute an unmistakable character of hyperbolic behaviour.  
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1. Introduction 
   
During the last years, with the appearance of novel 

disciplines that require work in areas of high frequency 
and high transitional regime such as the technology of 
ultrasound in gases, nuclear collisions, heating of solids by 
laser pulses [1- 2]. It has become necessary to review the 
behaviour of some laws at high transitional regime and 
very short time scales. Forever the heat transport 
phenomena have been studied based on the well-known 
Fourier's law which brings us back into the parabolic 
equation of heat. This equation has provided extensive and 
successful results in the study of heat transport and also is 
supported by many experiments that agree with the theory 
in most experimental conditions encountered in various 
disciplines of physics and engineering industry [1-2-3]. 
One of the most simple and accepted approach that can 
overcome the limitations of Fourier's law at high 
frequencies, is the Maxwell-Cattaneo equation, which is a 
hyperbolic partial differential equation, this type is called 
also the telegraph equation [3-4].  Many research groups 
carrying out experiments showing that the effect of 
hyperbolic heat can be easily observed [5-6-7]. But, other 
authors have criticized the methodology of these 
experiments and they showed other experimental 
alternatives that denied the existence of a hyperbolic heat 
effect [8-9]. Thus, there are few experiences that consider 
that the hyperbolic heat equation is adequate for studying 
the case of high frequencies [6-10-11].  

One of the most powerful techniques that have shown 
to provide useful results consists in exciting the physical 
system using a modulated thermal excitation [10-11].       

The easiest way to find a general equation of 
evolution of heat in a rigid body is to generalize the 
classical equation of heat. Intuitively, the most appropriate 
model for this situation is the classical Fourier law [3]      
  

                  K Tϕ = − ∇                                  (1) 
 
        By substituting (1) in the energy balance equation: 
 

u
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      With:              vdu C dT=                                    (3)    
 
       Where , , , ,u T Kϕ ρ∇ , , , ,u T Kϕ ρ∇  and   vC  are 
respectively the heat flux [w.m-2], internal energy per unit 
mass [J.kg-1] the temperature gradient [K. m-1], thermal 
conductivity[w.m-1.K-1], density [kg.m-3], and heat 
capacity per unit mass at constant volume [J.kg-1.K-1]. By 
substituting (1) in the law of energy balance in the absence 
of external sources.  
 

v
TC K T
t

ρ ∂
= ∆

∂
                               (4) 

 
This equation shows admirable agreement with 

experiments for most practical cases, but it has some 
anomalies at very small time intervals and in regime of 
high frequencies [3]. Onsager [12] noted that the Fourier 
model suffers of some contradictions with the principle of 
microscopic reversibility, but this contradiction ‘… is 
removed when we recognize that Fourier’s law is only an 
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approximate description of the process of conduction, 
neglecting the time needed for acceleration of the heat 
flow’. In another way, Fourier's law has unphysical 
properties and it lacks inertial effect. Its main drawback 
comes from the fact that Fourier law predicts an infinite 
speed of heat propagation, such that a thermal disturbance 
in any part of a sample results in an instantaneous 
perturbation anywhere else in the sample. This 
fundamental problem is due to the fact that Fourier law 
establishes explicitly that the both the temperature gradient 
and heat flux start instantaneously when one of them is 
imposed over a sample.      

In this way, the heat flux and temperature gradient are 
simultaneous and therefore there is no difference between 
the cause and the fact of the heat flow [3]. Even still it 
does not describe the phenomena are very fast or very 
steep as (light scattering in gases, neutron scattering in 
liquids, ultrasound propagation, heat propagation at low 
temperature ...) [3]. Cattaneo in 1948 [13] gives a solution 
to this problem and proposed to introduce in the Fourier 
law a relaxation term as.  

 

( )K T
t
ϕτ ϕ∂
= − + ∆

∂
                   (5)  

                                         
     Introducing (5) into (2), we obtain: 
 

       
2

2

1 0T TT
µ t µ t

τ∂ ∂
∆ − − =

∂ ∂
                  (6)     

                             
     Were, τ, µ = (K/ρCv) are respectively the thermal 
relaxation time [s] which represents the time necessary for 
the initiation of the heat flux after a temperature gradient 
has been imposed and thermal diffusivity [m2.s-1] of the 
material [14]. If the relaxation time becomes negligible the 
equation (6) becomes (4). The second order derivative of 
time shows the heat flow propagates as wave and the first 
order derivative corresponds to the diffuse character of 
heat [3-12].  Numerous authors [15-16-17-18] estimated 
the relaxation parameter for metals, superconductors and 
semiconductors is in the order of picoseconds to 
microseconds. In the case of values beyond the 
microsecond there is unphysical meaning of this term. In 
this case the law of Fourier becomes more suitable for 
describing the phenomena [18-19-20]. 

To study the response of the system subject to a 
general perturbation due to an energy supply term g(r,t), 
we rewrite the equation (1), expanding the heat flux in 
Taylor series around 0τ = , and approximating at first 
order in τ 

  K T
t
ϕϕ τ ∂+ = − ∆
∂

                      (7) 

On the other hand, energy conservation equation is 
given by [1] 

   ( , )v
TC g r t
t
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Where ( , )g r t g=  [w.m-3] is the source term which 
represents the power rate per unit volume at which the heat 
flux is generated. Combining equations (8) and (7) the 
hyperbolic heat conduction equation is obtained [3, 18] 
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2. Excitation of the wire with a thermal  
    sinusoidal signal of high frequency  
 
In this paper we inspect the behaviour and the 

propagation of heat in a several types of metallic wires 
subjected to different types of excitations, in hyperbolic 
approach. The wire with defined dimensions is excited 
with periodic thermal power source, delivering a harmonic 
amount of heat. We excite the wires with a modulated heat 
source at a frequency f, [18-19-20]. 
 

                (1 cos( ))g Q tω= +                       (10) 
 

        Where  2 fω π=  [rad.s-1] is the pulse of the 
modulated heat source and Q [w.m-3] is the spatial 
distribution of deposit energy over the metallic wires per 
unit volume. Inserting equation (10) in to (9) and we 
obtain 
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     With the following boundary and initial conditions 
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3.  Results and analysis 
 
The result in Fig. 1 illustrates the normalized 

amplitude as a function of frequency which is the 
numerical solution of (11) with boundaries and initials 
conditions (12). The wires used have the following 
features, same radius (r =20µm) and the same length 
(L=2cm). At 20 C° the values of the thermal diffusivity 
are: 

6 2 1144,88 10 .silverµ m s− −= × ,
6 2 1128,72 10 .Goldµ m s− −= × and  

6 2 125,67 10 .Platinumµ m s− −= × . 

We obtain this result by sweeping the frequency 
between 103 -106 Hz by solving (11) numerically [21] for 
each frequency value. We observe that for small 
frequencies 1ωτ , the hyperbolic approach converges 
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for all types of metallic wires to the same results as 
predicted by the classical law of Fourier. In contrast, in the 
case of 1ωτ , the curves follow an oscillatory regime 
for the considered metal and predict the oscillatory 
behaviour of radial temperature amplitude. So each type of 
material has typical behaviour in high frequency and it’s 
depending on his relaxation time τ  and thermal 
diffusivity µ. This typical behaviour constitutes a classical 
results founded analytically by [18-22]. Our results show 
that each wire has a specific oscillation witch not 
depending on the modulate source, knowing that all the 
wires are subjected to the same modulate source. One can 
conclude from the values of thermal diffusivity and Fig. 1 
that more the thermal diffusivity is smaller more the 
amplitude of oscillations is higher. Also a strong 
enhancement of heat transport is observed when the 
relaxation time becomes closer to thermalization time  τm 
defined by τm = (r2/4µ)[19-20-22] where r is the radius and 
µ is the thermal diffusivity of the wire. 

The Figs. 2-a and 2-b show the normalized 
temperature as a function of the wire radius, in different 
frequency modulated heat source  f=106 Hz for the Fig. 2-a 
and f=104 Hz  for the Fig. 2-b. In Fig. 2-a we observe in 
the case of high frequency regime 1ωτ  strong 
oscillations, when the radius of the wire is smaller. Other 
than when the radius becomes bigger, we watch an 
attenuation of the amplitude oscillations as reported by 
[18]. From the values of the thermal diffusivity and figure 
(2-a), the one can observe the great relation between the 
oscillations frequency, amplitude of normalized 
temperature and the nature of wire and their thermal 
diffusivity. We conclude that more the thermal diffusivity 
is smaller more the amplitude and frequency of normalized 
temperature is higher, and more the thermal diffusivity is 
bigger more the frequency and amplitude temperature is 
lower.    

In contrast in the case of low frequency regime 
1ωτ Fig. 2-b, all the wires show almost the same 

behaviour when the radius become bigger 4×10-5m, 
however when the radius become closer to 0.6×10-5m the 
amplitude of normalized temperature increase and each 
wire shows typical behaviour depending on the nature of 
the wire and their thermal diffusivity. Knowing that the 
wire used in figure (1) has radius of  r = 2×10-5m  we can 
easily prove that the values of normalized temperature 
given by Fig. 1 coincide with the values of normalized 
temperature in the case of f=106 Hz   in Fig. 2-a and in the 
case of  f=104 Hz  in Fig. 2-b. 

Undeniably is very important to take into account the 
thermal diffusivity of the wire in the high frequency 
regime or when the wire becomes smaller. On the other 
hand in the low frequency regime or when the radius of 
the wire grows up all the wires converge to the same 
values of normalized temperature.         

 
 
Fig. 1. The amplitude of the normalized temperature, in 
the radial direction, as a function of frequency. For wires  
                of Gold, Platinum, Silver and Copper. 
 

 
a) 
 

 
b) 

 
Fig. 2. a-b. The amplitude of the normalized temperature, 
in the radial direction, as a  function of radius for wires 
of Gold, Platinum, Silver and Copper. a) Modulated 
frequency  f = 106 Hz b) Modulated frequency f = 104 Hz.  

 
 

4. Excitation of the metallic wire with a  
    Gaussian heat source  
 
The answer of a system to a thermal disturbance is 

practically interesting. Such situation is encountered when 
the metallic wire is suddenly and rapidly heated. The 
energy transfer in such fast processes can’t be described 
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with Fourier’s law and requires more involved description 
[3-12-13-18]. 

To study the behaviour of heat in two types of metallic 
wires made with Gold and Silver. The wires are excited by 
two successive identical sudden thermal pulses (Gaussian 
shape) separated by a very short time interval (Pico 
seconds). We excite and compare the responses in 
hyperbolic and parabolic models for both types of wires. 
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          With σ[s] is the width of the Gaussian function 
and it γ β= − [s] is the time separating pulses, Q 
represents the power rate per unit volume at which the heat 
flux is generated.  

In this work the heat source take  the form (13) and by 
inserting equation (13) into (9) we obtain the equation 
governing this system in the hyperbolic case: 
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   With boundary and initial conditions 
 

    
2

2

( ,0) 0;0 2 10
( ,0) 0;0 2 10t

T x x
T x x

−

−

⎧ = ≤ ≤ ×⎪
⎨

= ≤ ≤ ×⎪⎩
          (15)    

 
      Figs. 3 shows the numerical response of the wire as a 
function of time, for hyperbolic (14) and parabolic (τ = 0) 
equations, in Cartesian coordinates following x direction. 
In two wires the first made with gold and second with 
silver previously used. The wires with the same radius and 
the same length as before, for Fig. 3,a 141,5 10 sβ −= ×  

 14, 3,5 10 sγ −= ×  and for the Fig.  3,b.  ' 143 10 sβ −= ×  
' 14, 13 10 sγ −= ×  

 
 

 
a) 

 
b) 

 
Fig. 3. a-b: Effect of the pulses in metallic wires with the 
interval time separating pulses,  it γ β= −  in two 

extreme cases: a) 1410 10it s−= × ,  140.5 10 sσ −= ×  

                    b) 142 10it s−= ×  141 10 sσ −= × . 

  
a) 

 
b) 

 
Fig. 4. a-b.  The evolution of the normalized amplitude of 
the temperature in Gold wire in the case of hyperbolic 
model, after two successive Gaussian excitations, 
separated    by    gap    time    for (a)  1410 10it s−= ×    

                      and 142 10it s−= ×  for (b). 
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a) 
 

 
b) 

 
Fig. 5. a-b . Spatial and temporal evolution of the 
normalized amplitude of the temperature in Gold wire in  
the case of parabolic model, after two successive 
Gaussian pulses excitations, separated by an interval 
time   for  (a)  1410 10it s−= ×  and 142 10it s−= ×  for (b). 

 
 

5.  Results and analysis 
 
The numerical results given in Fig. 3-a, show that 

after the first and second peaks the responses of  both gold 
and silver wires are similar to the both contribution 
hyperbolic and parabolic these results can be explained 
because the gap between two pluses is larger than the 
relaxation time. The Fig. 3-b shows that after the first 
excitation we have simultaneously an increase of 
temperature of the gold and silver wire which is legitimate 
for the both types of models.  

However beyond the first peak localized at time 
1,5×10-14s, our system cools down in two different ways 
since the curve given by hyperbolic model shows faster 
cooling (3-b) of the gold wire than the silver one than 
those given by parabolic which are superimposed for the 
both types of wires gold and silver. Similarly for the 
second peak localized at time 3,5×10-14s, the response 
given by gold wire in the hyperbolic case takes action 
quickly compared to that given by the silver wire in 
hyperbolic case. But in the parabolic case all the curves 
are similar. Beyond the second peak the four curves merge 
again and the system releases its heat in the same way for 

both types of equations and for all types of wires. We can 
conclude that after the first excitation, if the system has 
sufficiently time to relax τ >10×10-14s, the both models 
have similar responses Figs. 3-a and 4-a and 5-a. 

However in the case where the gap it  time is inferior 
or closer to the relaxation time τ < 3×10-14s, the system 
shows difference between both models Fig. 3-b 
Additionally we can see that the values of relaxation time 
of materials Silver Goldτ τ< are significant to take in 
account in the case of    high transitional regime. This 
typical behaviour is mainly due to the second order time 
derivative. As reported by (D. Jou, J. Casas-Văzquez, G. 
Lebon) [3]. We represent in Figs. 4-a and 5-a the evolution 
of the normalized temperature inside the gold wire as 
example to show the difference between the hyperbolic 
and parabolic models in the case when the gap time is 
bigger than the relaxation time. And the Figs. 4-b and 5-b 
represent the case when the gap time is quite smaller than 
the relaxation time of gold wire. 

 
 
6. Conclusions  
 
In this work the hyperbolic approach of the heat 

conduction was studied through metallic wires, which are 
excited by a modulated thermal source, under the 
framework of Maxwell-Cattaneo equation or hyperbolic 
heat equation. It has been shown that the thermal 
responses of all the wires with the same radius is similar 
however in the high frequency regime the normalized 
temperature of wires show oscillatory behaviour 
depending on their thermal diffusivity and relaxation time. 
These numerical results are supported by theory and 
experiments [18-19-22] which constitute an unmistakable 
character of hyperbolic behaviour. In high frequency 
regime 1ωτ or when the radius becomes smaller we 
conclude that is so important to take into account the 
thermal diffusivity of the wire. On the other hand in the 
low frequency regime 1ωτ or when the radius of the 
wire grows up all the wires converge to the same values. 
In addition we used numerical solution for studying the 
response of gold and silver wires under two successive 
Gaussian excitations. We concluded when the gap time is 
quite smaller than the relaxation time of gold or silver the 
response of the wire under the hyperbolic approach gives 
more accuracy than the parabolic approach. The present 
study might provide us with an approach in addition to the 
analytical and other numerical methods, and this approach 
might also has the potential in analysis of other transport 
properties such as to predict the  thermal relaxation time of 
nanofluides. 
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